
VASIM: Vertical Autoscaling Simulator Toolkit
Anna Pavlenko, Karla Saur, Yiwen Zhu, Brian Kroth, Joyce Cahoon, Jesús Camacho-Rodrı́guez

Microsoft, USA
{firstname}.{lastname}@microsoft.com

Abstract—In recent years, autoscaling has garnered significant
attention in cloud computing, emphasizing cost efficiency, perfor-
mance optimization, and availability for dynamic workloads. New
algorithms for horizontal, vertical, and hybrid scaling, targeting
instances, VM specifications, and resources like CPU, memory,
and IO, have emerged. Various approaches, including forecasting
and custom autoscaling functions, are used. However, conducting
comprehensive end-to-end testing remains a complex and costly
endeavor due to the variety of technology constraints involved.

This paper introduces VASIM, an autoscaling simulator toolkit
designed for testing recommendation algorithms, with a particu-
lar focus on CPU usage in VMs and Kubernetes pods. The toolkit
replicates common components found in autoscaler architectures,
including the controller, metrics collector, recommender, and
resource updater. It enables a comprehensive simulation of the en-
tire autoscaling system’s behavior, with the flexibility to customize
various parameters. In our demonstration, we showcase VASIM’s
versatility across multiple use cases, highlighting its effective-
ness in evaluating autoscaling strategies, fine-tuning parameters,
comparing algorithm performance, and addressing autoscaling-
related challenges. This underscores VASIM’s critical role in
expediting algorithm development and refinement by providing
a controlled environment for testing and experimentation.

Index Terms—autoscaling, simulation, resource management,
cloud computing.

I. INTRODUCTION

Cloud computing has revolutionized data systems devel-
opment and management, offering on-demand resources and
scalability. In this environment, data systems are commonly
deployed using VMs or, more recently, using containers
through modern platforms like Kubernetes (referred to as K8s),
which has gained widespread adoption for deploying data
systems in the cloud. During the provisioning of resources
in such deployments, users often need to specify their initial
requirements from a myriad of options, including CPU cores,
memory sizes, and more, due to the difficulty of accurately
estimating these requirements in advance, particularly given
the dynamic and ever-changing nature of many workloads.
As a result, users tend to fall into two categories: over-
provisioning increases costs while under-provisioning causes
performance problems due to “throttling”.

In response to these challenges, autoscaling has become
fundamental in cloud computing. It dynamically optimizes
resource allocation, improving efficiency and cutting costs. In
this work, we consider vertical autoscaling, which involves
the addition or removal of resources from existing instances,
i.e., VMs or containers. This is particularly relevant for mono-
lithic data systems with fixed instance counts or limitations
in horizontal scaling due to the size of data copy operations
required for creating new instances [1].

Controller 

Selected 
Metrics 

Data

Metrics
Server

Pluggable
Recommender 

Algorithmsreads
Decisions

writes

reads

Scaler

scalesApp-0 App-1

Fig. 1. Common resource autoscaler architecture.

Figure 1 illustrates the key components of the architecture of
a centralized autoscaler component designed for the dynamic
scaling of cluster resources. The data system is running within
a compute instance. The Controller serves load balancing and
ensures high availability. It publishes telemetry data related
to the data system, including real-time resource usage and
allocation (CPU/memory/IOPS), that is managed and stored
by the Metrics Server. The Recommender Algorithm, which is
pluggable, analyzes these metrics to make resource allocation
decisions. Lastly, the Scaler monitors the Decisions generated
by the algorithm, conducts health and resource safety checks,
and instructs the controller to adjust resource allocation as
needed. It is important to note that this same autoscaler can
be applied in various scenarios, as supported by previous
studies [2]–[5]. This includes scaling K8s pods1, optimizing
VM capacities, or efficiently managing storage resources.

The development of autoscaling recommender algorithms
within the previous architecture presents a significant chal-
lenge, requiring costly testing and meticulous fine-tuning pro-
cedures. This complexity arises from multiple factors: (1) the
algorithms have numerous parameters, making correct config-
uration difficult; (2) real-world testing across various scenarios
is necessary, including sudden spikes and low demand periods;
and (3) appropriate metrics must be considered to assess
algorithm effectiveness based on user requirements and budget
constraints. These metrics include: (1) slack, denoting the
extraneous resources, such as CPU and memory, allocated
to prevent resource strain during utilization spikes; (2) throt-
tling, representing instances where CPU or another resource
type lacks sufficient capacity, resulting in performance issues
or system crashes that can jeopardize system stability; and
(3) number of scalings, as excessive scaling can negatively

1A pod serves as a logical encapsulation for one or more containers that
share the same resources within a K8s cluster.



Simulation
Controller 

Recommender
:get _decision Cloud State 

Provider 
Simulator

: read traces
: control time

Algo
1

Params tuning
Controller 

Analyzer
: get metrics
: get pareto 

front

Simulation 
Scaler
:scale

Algo
N

Fig. 2. VASIM infrastructure.

impact system performance due to disruptions in resource
allocation. To overcome this challenge, simulations are es-
sential for quickly evaluating recommendation algorithms and
estimating potential cost savings.

This paper introduces VASIM, a novel tool designed to
address the intricacies of autoscaling algorithm evaluation,
allowing faster iteration. While the industry already offers a
variety of simulation tools focusing on diverse aspects (e.g.
energy efficiency, cloud topology optimization, fault tolerance,
etc. [6]), VASIM distinguishes itself by placing particular
emphasis on the “recommender” component of autoscaling.
VASIM makes several key contributions. (1) Resource Ef-
ficiency and Cost Reduction: VASIM makes a significant
impact by reducing costs through the elimination of resource-
intensive real-time testing and scaling operations. This ap-
proach empowers developers to iteratively fine-tune algorithms
within a controlled, cost-effective environment, thus expedit-
ing development cycles. (2) Multi-objective Optimization:
Addressing the challenge of managing multiple conflicting
parameters in autoscaling algorithm development, VASIM
leverages Pareto optimization techniques that effectively ex-
plores parameter configurations, enabling developers to strike
a harmonious balance between critical metrics like resource
slack and throttling levels. (3) Recommender Algorithm
Testing: VASIM streamlines the process of testing and eval-
uating recommendation algorithms across 4000+ workloads.
Researchers can gauge scalability and sensitivity to various
workload types, facilitating data-driven fine-tuning and al-
gorithmic enhancements. (4) Versatility and Adaptability:
Unlike restrictive tools tailored to specific autoscaling systems,
VASIM stands as a versatile, adaptable solution suitable for
a wide range of systems. Users have the flexibility to inter-
change components, experiment with various recommendation
strategies, switch machine learning models, and assess the
implications of changes in scaler mechanisms—all within a
controlled and customizable environment.

In the rest of the paper, we provide an in-depth exploration
of VASIM and outline our plans for the demonstration of its
utility across various scenarios.

II. VASIM SYSTEM OVERVIEW

VASIM facilitates controlled evaluations of scaling system
logic and algorithms, offering a cost-effective alternative to
resource-intensive system assessments.

Simulator Components. The components of VASIM are
depicted in Figure 2. The Simulation Controller orchestrates
the entire simulation. It initiates the process by loading
simulation parameters and triggering the operation of other
components. Upon initialization, the Cloud State Provider
Simulator analyzes input resource traces and generates metrics
that represent resource allocation and utilization at any given
moment. The customizable Recommender runs the autoscaling
algorithm using these metrics and determines scaling actions
that are executed in a simulated environment by the Simula-
tion Scaler. The Parameter Tuning Controller configures the
algorithm, specifying argument values employing strategies
like grid or random search. Multiple configurations are run
in parallel on multicore machines to fine-tune the algorithm,
accelerating the process and enhancing scalability. Analyzer
collects performance metrics on each simulation run, including
instances of insufficient resources and scaling events based on
the decisions made by the recommender and workload trace.

Pareto Frontier Analysis. The Analyzer component plays a
vital role in assessing the system’s performance. It allows us to
create Pareto frontiers that helps us understand the trade-offs
between scaling frequency, resource usage, and cost. A Pareto
frontier is a concept in multi-objective optimization that repre-
sents the set of optimal solutions where no improvement in any
one objective can be achieved without sacrificing performance
in at least one other objective. Each point on the Pareto frontier
represents a distinct algorithm configuration, offering a range
of choices from cost-effective to high-performance settings.

To pinpoint the optimal state with minimized slack, throt-
tling, and the number of scalings, denoted as L, we introduce
the following extended objective function G:

G(α, β, p) = α ·K(p) + β · C(p) + L(p), (1)

where α and β are scalar coefficients that represent
the penalties for having slack and throttling, respectively.
By adjusting these coefficients, the preference for higher
slack/throttling/number of scalings can be tailored. The param-
eter p represents the combination of parameters, while K(p),
C(p), and L(p) denote the observed (simulated) total slack,
insufficient CPU, and the number of scalings, respectively.
This function computes an objective value by combining the
three observed metrics, assigning a weight of α to slack, β to
throttling, and a weight of 1 to the number of scalings.

The optimal parameter combination set can be estimated by
iterating over all possible values of α and β:

p̂ = argmin
p

G(α, β, p)|∀α, β ∈ D, (2)

where we sample random numbers from a log-uniform (recip-
rocal) distribution with ln(D) ∼ U(−100, 100) to encompass
a broad range of values.

The Pareto curve helps us choose the ideal parameter
configuration that aligns with our business requirements.

Simulator Accuracy. To validate the VASIM’s accuracy,
we conducted extensive experiments comparing the VASIM’s



scaling decisions with real benchmarks using statistical analy-
sis, such as pairwise t-tests. The consistent alignment between
the real and simulated runs affirms the VASIM’s reliability. For
instance, in the scenario depicted in Figure 3 and Figure 4, the
only notable inconsistency occurred after 20 hours when the
actual production system failed to downscale as intended due
to a transient error.

T
Time

0hr 12hr 24hr 36hr 48hr 60hr 72hr

C
PU

 U
sa

ge

C
ore C

ount

0

2

4

6

12

8

10

14

0

2

4

6

12

8

10

14

Fig. 3. Real run.

T
Time

0hr 12hr 24hr 36hr 48hr 60hr 72hr

C
PU

 U
sa

ge

C
ore C

ount

0

2

4

6

12

8

10

14

0

2

4

6

12

8

10

14

Fig. 4. Simulated run.

Versatility and Adaptability. Our simulator is versatile,
allowing for the evaluation of machine learning algorithms
for cloud resizing, migration, and recommendations. It sup-
ports component replacement, model switching, and testing
of different scaling mechanisms, enabling comprehensive test-
ing, capacity planning, and performance optimization. VASIM
can use input traces from Alibaba [7] and various database
systems’ workloads, accommodating for differences in their
scaling behaviors by adjusting parameters for scaling duration.

III. IMPLEMENTATION AND EVALUATION

VASIM can be used on standard machines and is imple-
mented as a Python package. One simulation run can take just
minutes depending on the selected algorithm and input trace
data. Additional algorithms can be incorporated as Python
classes that conform to a predefined interface. Currently,
VASIM has been used to validate and tune three different
recommendation algorithms using Alibaba traces [7], internal
Microsoft database traces, and K8s traces generated by running
BenchBase benchmarks [8].

In a representative experiment, spanning 8 days, we con-
ducted 10,000 simulation runs using distinct algorithm config-
urations, completed on an Azure Standard D96ads v5 instance
(96 vCPUs, 384 GiB RAM) in less than an hour. This show-
cases VASIM’s efficiency in exploring diverse autoscaling
algorithms and strategies swiftly.

IV. DEMONSTRATION

VASIM will be demonstrated using an interactive Python
web application built with the Streamlit framework. While we
acknowledge the potential utility of VASIM in different con-
texts and for various user roles, our demonstration specifically
explores scenarios encountered by researchers and engineers,
referred to as users, during the development, fine-tuning, and
operation of recommender algorithms.

Scenario 1 (Autoscaling Strategy Evaluation). Consider
a cloud-based data system running fluctuating workloads,
resulting in occasional resource over-provisioning and under-
provisioning. In this context, a user aims to implement an
autoscaling algorithm. Their objective is to assess the effects

of the dynamic autoscaling strategy on resource utilization,
cost, and performance metrics, with the intention of refining
and tuning the algorithm accordingly.

Initially, the user chooses a representative workload and
gather historical CPU trace data to capture real-world vari-
ations in resource demand. Subsequently, they integrate a
sophisticated recommender algorithm that leverages ML tech-
niques to make scaling decisions based on this trace data.

With VASIM, the user can observe the progression of CPU
utilization over time as well as the autoscaling decisions
overlayed onto the graph. Figure 5 displays two runs with
the same recommender and workload but different parameters.
VASIM calculates crucial metrics to evaluate the autoscaling
results, such as the count of idle CPU cores, the degree of
application throttling, and the frequency of scaling events.
An analysis of these metrics yields valuable insights into the
effectiveness of the selected autoscaling strategy.

Fig. 5. Simulations: same autoscaling algorithm, different parameters

Operating offline, VASIM enables an iterative approach
to refining the recommender algorithm’s parameters. These
parameters, including scaling thresholds, time-to-scale, and re-
covery times, can be adjusted to fine-tune critical settings. By
systematically exploring the parameter space and employing
search techniques like random and grid search, or advanced
methods such as Bayesian approaches [9], users can optimize
the autoscaling strategy to align with the unique workload
characteristics.

This scenario not only illustrates the practical value of
VASIM but also highlights its efficacy in the process of
fine-tuning and optimizing autoscaling strategies within a
controlled environment, allowing users to customize these
strategies to align with the specific needs of their workloads
and the end users of their data systems. It is important to
note that multiple algorithms may be available, and within the
same scenario, a user has the option to quantitatively assess
and compare algorithms’ performance.

Scenario 2 (Parameter Tuning Based on Objective Func-
tion). The objective or optimization function for the autoscal-
ing process is adaptable, depending on the specific user
requirements, often involving metrics that directly conflict with
each other. For instance, the pursuit of minimizing resource
slack may conflict with the objective of minimizing throttling.
In this scenario, a user aims to thoroughly explore the vast
space of configuration values for the parameters exposed by
their algorithm. They also consider metric weights that reflect
the importance of specific aspects, such as slack or throttling,



TABLE I
CORRELATION BETWEEN PARAMETER AND PERFORMANCE.

Params sum slack
sum

insufficient
cpu

num
scalings

num
insufficient

cpu

insufficient
observations

a 0.40 -0.03 -0.12 -0.13 0.13
b -0.31 0.39 0.21 0.38 0.38
c 0.29 -0.04 0.04 -0.08 -0.08
d 0.61 0.44 0.72 0.48 0.48
e 0.22 0.08 -0.12 -0.12 0.12

in their optimization goal. The ultimate aim is to identify
configurations that align with the user’s objectives.

VASIM uses Pareto optimization to concurrently reduce re-
source slack, throttling levels, and the number of scaling events
(as depicted in Figure 6, which shows that decreasing slack
results in an increase in throttling or scaling). This approach
can be seamlessly expanded to accommodate additional di-
mensions as necessary. Through experiments conducted using
VASIM, the user gains valuable insights into how various
parameters interact and directly impact autoscaling decisions,
which in turn allows them to fine-tune the algorithm.

Fig. 6. Illustration of the Pareto frontier analysis, showing algorithm con-
figurations based on trade-offs. This visualization is based on an extensive
dataset of 10,000 experiments with different parameter configurations.

Scenario 3 (Scalability and Performance Tailored to Di-
verse Workloads). The development and testing of new rec-
ommendation algorithms can be a challenging and resource-
intensive undertaking. Users often find themselves in need of
a practical and efficient means to evaluate their algorithms
across a spectrum of workloads and shapes, all without the
necessity of real-time execution.

A user wants to leverage VASIM’s capabilities to conduct
comprehensive evaluations of their recommendation algo-
rithms using a broad variety of workloads. This process begins
by collecting a set of traces that accurately represent their
operational context. To illustrate this, we clustered a collection
of more than 4000 CPU workload traces from Alibaba [7]
and extracted 9 traces (c 29759, c 10235, c 12104, c 23544,
c 24173, c 26742, c 29247, c 29345, c 48113) representing
the most common scenarios.

VASIM allows the user to perform a thorough examination
of algorithm stability across various workload types, including
cyclical, bursty, and monotonic variations. Additionally, it
enables a detailed assessment of various recommendation met-
rics, revealing their relative importance in specific scenarios.

Furthermore, this scenario delves into algorithm sensitivity,
revealing which parameters the recommender algorithm re-
sponds to most and identifying parameters that can be reduced
without compromising performance (e.g., as illustrated in the
parameter heat map in Table I). This rigorous analysis equips
users with the knowledge needed to craft recommendation
algorithms that are robust and tailored to diverse scenarios.

In summary, this scenario illustrates VASIM’s ability to
expedite the development and testing of recommendation
algorithms. It allows users to efficiently evaluate algorithm
performance across a wide array of workloads, make precise
refinements, and create recommendations that perform well
under diverse conditions, all within minutes rather than days.

V. CONCLUSION

In this paper, we introduced VASIM, a comprehensive simu-
lation framework designed for the evaluation and fine-tuning of
autoscaling algorithms within a controlled environment. Evalu-
ated through numerous real-world use cases involving popular
data systems, VASIM shows its adaptability and effectiveness,
promising a significant impact on the development and testing
of algorithms. While VASIM’s effectiveness relies on the
accuracy of workload traces and simulation assumptions, it
represents a valuable step forward, streamlining development
and providing valuable insights and optimization prospects. In
fact, VASIM has already played a key role in the development
and tuning of algorithms that we have integrated into the
K8s vertical pod autoscaling module [1]. This is is facilitated
by the close alignment between the VASIM architecture and
commonly used resource management architectures. In our
future work, we plan to expand support to additional resources
beyond CPU and incorporate additional metrics, potentially
emitted by the specific systems being tuned.

REFERENCES

[1] A. Pavlenko, J. Cahoon, Y. Zhu, B. Kroth, M. Nelson, A. Carter, D. Liao,
T. Wright, J. Camacho-Rodrı́guez, and K. Saur, “Vertically Autoscaling
Monolithic Applications with CaaSPER: Scalable Container-as-a-Service
Performance Enhanced Resizing Algorithm for the Cloud,” in ACM
SIGMOD, 2024.

[2] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Elasticity in
Cloud Computing: State of the Art and Research Challenges,” IEEE
Transactions on Services Computing, vol. 11, no. 2, pp. 430–447, 2018.

[3] K. Rzadca, P. Findeisen, J. Swiderski, P. Zych, P. Broniek, J. Kusmierek,
P. Nowak, B. Strack, P. Witusowski, S. Hand, and J. Wilkes, “Autopilot:
Workload Autoscaling at Google,” in EuroSys, 2020.

[4] T. Lorido-Botran, J. Miguel-Alonso, and J. Lozano, “A Review of Auto-
scaling Techniques for Elastic Applications in Cloud Environments,” J
Grid Computing, vol. 12, pp. 559–592, 2014.

[5] H. Fernandez, G. Pierre, and T. Kielmann, “Autoscaling Web Applications
in Heterogeneous Cloud Infrastructures,” in IEEE International Confer-
ence on Cloud Engineering, 2014.

[6] S. Piraghaj, A. Dastjerdi, R. Calheiros, and R. Buyya, “Container-
CloudSim: An environment for modeling and simulation of containers
in cloud data centers,” Software: Practice and Experience, vol. 47, no. 4,
pp. 505–521, 2017.

[7] Alibaba Inc., “Alibaba Open Cluster Trace,” 2018, https://github.
com/alibaba/clusterdata.

[8] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudré-Mauroux, “OLTP-
Bench: An Extensible Testbed for Benchmarking Relational Databases,”
PVLDB, vol. 7, no. 4, pp. 277–288, 2013.

[9] C. M. Bishop and N. M. Nasrabadi, “Pattern Recognition and Machine
Learning,” J. Electronic Imaging, vol. 16, no. 4, 2007.


